Abstract
Hemolysis is a major pre-analytical concern for many laboratory analytes; however, instruments utilized for whole blood chemistries and blood gas measurements lack the ability to detect and measure the degree of hemolysis. This study evaluated the effect of hemolysis on 13 routine whole blood and blood gas analytes and compared visual assessments of hemolysis to measured hemolysis (H-index). Remnant whole blood samples (n = 85) were split into 2 portions and aspirated through a syringe one or more times. To induce hemolysis, a needle was affixed to the end of the syringe to provide shear stress, and a mock procedure without syringe was used as a control. Samples were analyzed on a Radiometer ABL800 series instrument, centrifuged, and the H-index of the plasma portion was measured. Two medical technologists recorded a visual categorization of the specimens as slightly, moderately, or severely hemolyzed. Hemolysis had a modest effect on metabolites and most cooximetry components, with percent bias within ±5% at all levels of hemolysis. Methemoglobin exhibited a larger overall negative bias, up to 13.3%. The absolute pH bias was fairly consistent (within 0.1 pH units) across all levels of hemolysis. As expected, potassium displayed a significant positive bias with increasing hemolysis. Sodium and ionized calcium displayed overall linear trends with a significant negative bias. Hemolysis can falsely increase or decrease certain blood gas analytes and lead to misinterpretation of results. Therefore, hemolysis detection capabilities are crucial for mitigating this effect and ensuring accurate results for patient care.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The journal of applied laboratory medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.