Abstract

AbstractVertical wind shear (VWS), as an important dynamic factor influencing tropical cyclone rainfall (TCR), has a remarkable diurnal cycle of variation over the East Asia–western North Pacific region. The magnitude of tropical cyclone (TC)‐experienced VWS has enhanced amplitude but different phases over the South China Sea (SCS) and coastal East China (CEC) compared with that over the open ocean. Diurnal variation in TCR over the SCS shows statistically significant correlation with that of VWS. The convection concentrated in the downshear‐left quadrant strengthens markedly when VWS becomes large, thereby delaying the peak rainfall in the inner core of the TC and enhancing the amplitude of the diurnal cycle of TCR at ~09 local standard time. Over CEC, the diurnal signal of TCR is very weak but statistically significant in the downshear‐left and upshear‐right quadrants with opposite phase, illustrating the change in asymmetry of the spatial distribution of TCR induced by the large VWS diurnal cycle. The findings of this study could provide reference for improved forecasting of TCR on the fine temporal scale.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.