Abstract

The total graph of a ring R, denoted as T(Γ(R)), is defined to be a graph with vertex set V(T(Γ(R)))=R and two distinct vertices u,v∈V(T(Γ(R))) are adjacent if and only if u+v∈Z(R), where Z(R) is the zero divisor of R. The Cartesian product of two graphs G and H is a graph with the vertex set V(G×H)=V(G)×V(H) and two distinct vertices (u_1,v_1 ) and (u_2,v_2 ) are adjacent if and only if: 1) u_1=u_2 and v_1 v_2∈H; or 2) v_1=v_2 and u_1 u_2∈E(G). An isomorphism of graphs G dan H is a bijection ϕ:V(G)→V(H) such that u,v∈V(G) are adjacent if and only if f(u),f(v)∈V(H) are adjacent. This paper proved that T(Γ(Z_2p )) and P_2×K_p are isomorphic for every odd prime p.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.