Abstract

Inactivation of the Hippo tumor suppressive pathway is frequently observed in mesothelioma, which leads to the activation of YAP and TAZ (YAP/TAZ) transcriptional coactivators. YAP/TAZ form complexes with TEAD family members, DNA-binding proteins, to activate transcription, which promotes cancer cell growth and proliferation. Recently developed TEAD inhibitors exhibit antitumor activity by inhibiting the formation of the transcription complex through binding to TEAD; however, the antitumor activity of TEAD inhibitors against mesothelioma remains to be fully elucidated. Here, we show that the TEAD inhibitor K-975 acts as a pan-TEAD inhibitor and selectively inhibits the binding of TEAD-binding proteins, especially YAP/TAZ, in mesothelioma cells. In studies using a panel of mesothelioma cell lines, K-975 showed a significant growth inhibitory effect on Hippo-inactivated mesothelioma cells, but some of these cell lines exhibited primary resistance to K-975. Differential gene expression analysis revealed that cells resistant to K-975 exhibited activation of MYC signaling in the presence of K-975, and cells overexpressed with MYC showed strong drug resistance, both in vitro and in vivo. Our study revealed the features of a subset of mesothelioma cells that proliferate in a TEAD-independent manner and provides important insights for the successful development of therapeutic strategies for mesothelioma with Hippo pathway inactivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.