Abstract
Whilst DNA encodes our genetic blueprint as individual nucleobases, as well as epigenetic annotations in the form of biochemical marks, it also carries an extra layer of topological information -, the local over or underwinding of the double helix, known as DNA supercoiling. Supercoiling is a fundamental property of DNA that can be viewed as "topological epigenetics": it stores energy and structural information, and is tightly linked to fundamental processes; however, its quantification and study, by experiments and modelling alike, is challenging. We review experimental and simulation techniques to study supercoiling and its partition into twist and writhe, especially in the context of chromatin. We then discuss the dynamics of transcription-driven supercoiling invitro and invivo, and of supercoiling propagation along mammalian genomes. We finally provide evidence from the literature and potential mechanisms linking this ethereal topological mark to gene expression and chromosome instabilities in genetic diseases and cancer.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.