Abstract

Viscoelastic shear flows support additional chaotic states beyond simple Newtonian turbulence. In vanishing Reynolds number flows, the nonlinearity in the polymer evolution equation alone can sustain inertialess “elastic” turbulence (ET) while “elasto-inertial” turbulence (EIT) appears to rely on an interplay between elasticity and finite-Re effects. Despite their distinct phenomenology and industrial significance, transition routes and possible connections between these states are unknown. We identify here a common Ruelle-Takens transition scenario for both of these chaotic regimes in two-dimensional direct numerical simulations of FENE-P fluids in a straight channel. The primary bifurcation is caused by a recently discovered “polymer diffusive instability” associated with small but nonvanishing polymer stress diffusion which generates a finite-amplitude, small-scale traveling wave localized at the wall. This is found to be unstable to a large-scale secondary instability which grows to modify the whole flow before itself breaking down in a third bifurcation to either ET or EIT. The secondary large-scale instability waves resemble “center” and “wall” modes, respectively—instabilities which have been conjectured to play a role in viscoelastic chaotic dynamics but were previously only thought to exist far from relevant areas of the parameter space. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.