Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Year
Publisher
Journal
1
Institution
Institution Country
Publication Type
Field Of Study
Topics
Open Access
Language
Filter 1
Export
Sort by: Relevance
Early Neurophysiological Monitoring of Train of Four Assists in the Detection of Pseudocholinesterase Deficiency

ABSTRACT A craniotomy with cortical and subcortical mapping was planned for a 64-year-old male with a large right frontotemporal brain mass. Total intravenous anesthesia was performed, and 200 milligrams of succinylcholine was administered at induction. A train of four prior to head pinning (52 minutes after succinylcholine administration) revealed zero of four twitches in the left hand and foot. The patient did not regain spontaneous breathing despite discontinuation of infusions and the surgeon canceled the case at 108 minutes from induction. The patient was safely extubated at 270 minutes. Pseudocholinesterase deficiency was suspected, and labs revealed that the patient was outside of the normal range for pseudocholinesterase enzyme at 698 units/L with a dibucaine inhibition number of 40. The patient’s procedure was rescheduled 2 days later, and neuromuscular blockade was avoided. The procedure went ahead as planned with successful mapping and monitoring. This case highlights the effect of pseudocholinesterase deficiency on neuromonitoring and the importance of running train of four early on to detect neuromuscular junction issues in high-risk procedures. In this case, the surgeon was able to avoid pinning and positioning the patient and rescheduled the procedure so that motor mapping, direct cortical motor evoked potentials, and transcranial motor evoked potentials could be successfully performed.

Read full abstract
Detecting and Addressing Secondary Neural Injuries in Cranial Surgery: Case Report

ABSTRACT Intraoperative neurophysiological monitoring (IONM) is instrumental in mitigating neurological deficits following cranial and spinal procedures. Despite extensive research on IONM’s ability to recognize limb-malposition-related issues, less attention has been given to other secondary neural injuries in cranial surgeries. A comprehensive multimodal neuromonitoring approach was employed during a left frontal craniotomy for tumor resection. The electronic medical record was reviewed in detail in order to describe the patient’s clinical course. The patient, a 46-year-old female, underwent craniotomy for excision of a meningioma. Deteriorations in somatosensory evoked potential and transcranial motor evoked potential recordings identified both a mal-positioned limb as well as an infiltrated intravenous (IV) line in the arm contralateral to the surgical site. The IONM findings for the infiltrated IV were initially attributed to potential limb malposition until swelling and blistering of the limb were appreciated and investigated. The timely identification and management of the infiltrated IV and adjustment of limb positioning contributed to the patient’s recovery, avoiding fasciotomy, with no postoperative neurological deficits. This case is the first published demonstration of the utility of IONM in detecting IV infiltration. This early recognition facilitated early intervention, saving the patient from a potential fasciotomy and enabling their recovery with no postoperative neurological deficits. The findings from this single case highlight the necessity for vigilant and dynamic application of IONM techniques to enhance patient safety and outcomes in neurosurgical procedures. Further research is needed to explore broader applications and further optimize the detection capabilities of IONM.

Read full abstract